The solar dynamo (critical comments on)
The solar dynamo (critical comments on)

- what observations show
- what they show is not the case
- what is known from theory
- interesting open questions

quantitative models \leftrightarrow `figuring things out'
- clues about deep layers from things happening at the surface
- role of the ‘tachocline’
- dynamo driven by magnetic instability, not ‘convective turbulence’
Things happening on the surface

- Emergence of active regions: clues to the cycle’s workings
- strength and location of the cycle field
- role (?) of convective turbulence
Active region emergence

Fields move independent of surface flow.

+,− in opposite directions: ‘antidiffusion’.

Hinode JAXA/NASA The Hinode ‘trilobite’

SPD Hale talk 14 June 2011
Active region emergence

Fields move independent of surface flow.
+,- in opposite directions: ‘antidiffusion’.
Active region emergence

Properties

- regularity of Hale’s polarity law
- emerging fields move independent of surface flows (Vrabec 1974), ‘antidiffusion’
- sunspot proper motion time scales - a few days (Herdiwijaya et al. 1997)
- tilt of AR continues to settle after emergence (Howard 1991a)
- mean meridional drift or AR < 0.5 m/s (Howard 1991b)
active region emergence
(Cowling 1953)

W. Elsaesser 1956

Fig. 5. Showing a strand of the solar toroidal field lifted locally and giving rise to a bipolar sunspot group.

the ‘rising tree’

Zwaan 1978

SPD Hale talk 14 June 2011
Q1: why does the field erupt?
A: (Babcock) when its reaches a critical strength

Q2: from which depth?
A: base convection zone.

‘Winding-up’ by differential rotation with latitude

SPD Hale talk 14 June 2011
Interpretation (ct.'d)
- active region tilt produced by emergence is the ‘α-effect’ of the cycle

Q: which flows (where) produce the Coriolis displacement?
A: look at tilt development

Interpretation (ct.'d)
Q: where is the tilt produced?

look at tilt development (Howard 1992)

- most tilt **after** main flux emergence,
- during separation of polarities

Effect is **not** caused at the surface

- mass (ρ) energy density (B^2, P) is at the **base**
Stable interior

Coriolis force on spreading AR

\[F_{\text{cor}} = 2v \times \Omega \]
Equatorward drift (Babcock 1961)

\[\frac{\partial}{\partial t} B_\varphi \sim \sin 2 \Lambda (1 + 1.51 \sin^2 \Lambda) \]

Equatorward drift+‘Polar branch’

[B_{\text{inst}} \sim 10^5 \text{G} \quad \text{(Schüssler et al. 1994)}]
Questions:
- location
- strength } of the azimuthal field

Location?
Field of 3000G (spots @ surface) is buoyant.
buoyant rise time $z/v_A = 2d$ ($z=50$ Mm)
\rightarrow spots are ‘anchored’ deeper than 50 Mm
\rightarrow they are not a surface effect

Magnetic buoyancy can be compensated by lower temperature
Buoyant (Parker-)instability
Convection zone itself unstable } \rightarrow

stable location: base of the convection zone
Rising flux tubes: 1D simulations

Choudhuri & d’Silva 1993,
Fan & Fisher 1994
Schüssler et al. 1994

Model for fields rising from base of the CZ
- 1D: flows along and across tube
- including thermal and magnetic buoyancy
- free parameter: B at base

data to fit:
- latitude of emergence
- time scale
- AR tilt

convergence with these three obs. for $B \sim 100 \text{kG}$

$\frac{B^2}{2\pi} \gg \frac{1}{2} \rho v_{\text{conv}}^2$

\Rightarrow emergence process only weakly influenced by convection
Why at base CZ?
- field is not passively carried by flow → stronger than equipartion
- stratification of convection zone has no restoring forces
- fields can not ‘float midway’ for as long as years
- floats to top or sinks to bottom (if heavy enough ...)
---> winding-up during cycle must happening @ base

- **If at base CZ:**
 - field becomes unstable (Parker instab.) at $\approx 10^5 G$ (Schüssler et al. 1994)

`rising tube` simulations:
- rise time \approx days
- in the observed latitude range
- with right AR tilt

SPD Hale talk 14 June 2011
Interpretation (ct.'d)

-> contact made between MHD of interior and observations @ surface.

Explains:
- Hale’s & Joy’s laws
- time scale of spot proper motions (Alfvén travel time)

consequences:
- Field is stronger than convection
- → direct connection between surface and interior
- B not generated by ‘interaction with turbulent convection’:
 cycle operates on differential rotation and instability of B. (compare: field generation in accretion disks)
- Differential rotation with latitude (not radius)

Theories
- turbulent mean field models
- superficial sunspots
- flux transport models

SPD Hale talk 14 June 2011
The need to produce quantitative models

- mean field alfa-omega:
 - interaction turbulent convection - magnetic field
 - kinematic
 - operating in bulk of CZ

variations:

- tachocline dynamos
- flux transport dynamos
Responds to the need for quantitative, computable models

Little or no contact with observations:
- inconsistent with emergence process, sunspot formation
- kinematic.

Assumptions:
- Active regions are ‘turbulence’ (‘to be averaged out’)
- Field strength dictated by interaction w. convection
 (contradicted by strength of sunspots)
- Takes place by interaction between convection and B
 (contradicted by phenomenology of AR emergence)

Predictions
- rotation rate depends more on depth than latitude
 (contradicted by helioseismology)

Theoretical Justification
- high R_m : B intrinsically non-local (↔ scale separation)
Tachocline dynamos

1. Why the tachocline is not what operates the solar cycle

‘Tachocline’ ↔ ‘base of convection zone’ (not same thing)
- radial shear in CZ predicted by convective mean field electrodynamics absent,
- shear is in latitude
- move dynamo into tachocline?

\[v \rightarrow T_{r\phi} \text{ stress} \rightarrow \phi \rightarrow r \uparrow \]

Turbulence, dynamo ...

\[-v \rightarrow -T_{r\phi} \]

‘shear between moving plates’
- radial shear in CZ predicted by convective mean field absent
- shear is in latitude
- move dynamo into tachocline?

\[-v \quad Tr\phi \quad stress \quad \phi \quad \rightarrow \quad r \uparrow \]

Turbulence, dynamo?

\[-v \quad Tr\phi = 0 \quad \text{no stress} \]

\textit{convectively stable interior}
convection zone,
\[
\text{Re stress } < \nu_r \nu_\phi > \rightarrow \nu_t \sim 10^{13} \text{ cm}^2/\text{s}
\]

\[\nu \rightarrow T_{r\phi} \text{ stress} \quad \phi \rightarrow r \uparrow\]

Turbulence, dynamo?

\[\nu \leftarrow -\nu \quad T_{r\phi} = 0 \quad \text{no stress}\]

convectively stable interior: \(\nu \sim 10 \text{ cm}^2/\text{s}\)

viscous stress vanishes
convection zone,

\[\text{Re stress} \quad < v_r v_\phi > \quad \rightarrow \quad \nu_t \sim 10^{13} \text{ cm}^2/\text{s} \]

\[v \quad T_{r \phi} \quad \text{stress} \quad \phi \quad \rightarrow \quad r \uparrow \]

base of CZ,
\[T=2.0 \text{ MK} \]

Li burns here,
\[T=2.6 \text{ MK} \]

\[\nu \sim 10^3 \text{ cm}^2/\text{s} \]

from Li - depletion constraint

SPD Hale talk 14 June 2011
Q:
1. What causes the thin tachocline?
2. What operates the solar cycle?

A:
1: Tachocline is an imprint of the latitudinal differential rotation into the interior. (Spiegel & Zahn 1992, McIntyre 2007)

2: $\Omega(\theta)$

Consequences for all models that use $\Omega(r)$.

SPD Hale talk 14 June 2011
flux transport dynamos

- mean field alfa-omega equations (kinematic ...)
- sources of alfa-effect at surface (observational illusion ...)
- flux transport at surface
- latitude drift of active zone by return flow (not observed ...)
Solar cycle: open issues

1 ‘Thermodynamic problem’: strength of the field @ base requires low temperatures

\[B = 10^5 \approx \delta T / T \sim 10^{-4} \]

2 Flux disappearance rate (Labonte & Howard 81: AR flux lives 10d)

- turbulent diffusion: not an explanation.
- reconnection: where?

 (c.f. Parker 2009)
Flux disappearance rate: how long does the flux of the cycle stay around?

- TSI decline during last (extended) minimum
- how much does the quiet Sun magnetic flux contribute to TSI?
Magnetic brightening of the Sun

‘quiet Sun’: \(\langle |B_z| \rangle \approx 10 \text{ G} \)

Q: - dependence on cycle phase?
 - effect on brightness?
 - long term variation?
Magnetic brightening of the Sun

Average of minima: 1365.440 ± 0.014 Wm⁻²
Difference of minima to average: +0.124; +0.071; −0.195 Wm⁻²
Cycle amplitudes: 0.928 ± 0.019; 0.919 ± 0.020; 1.040 ± 0.017 Wm⁻²

C. Fröhlich et al. 2011

SPD Hale talk 14 June 2011
Magnetic brightening of the Sun

- brightness of small scale field dominates over spot darkening
- 0.08% cycle variation of TSI has no climate effect

- possibly larger longer term variations?
 * magnetic fields
 * as yet unknown mechanisms

SPD Hale talk 14 June 2011
Magnetic brightening of the Sun

‘bright wall effect’:

SPD Hale talk 14 June 2011
Magnetic brightening of the Sun

‘bright wall effect’:

- small scale field causes heat leaks in surface → enhanced cooling → geostrophic flows around AR → ‘torsional oscillation’

HCS 1977
HCS 2003

important epicycle skipped here ...

SPD Hale talk 14 June 2011
Magnetic brightening of the Sun

'bright wall effect':

- small scale field causes heat leaks in surface (HCS 1977)
 → enhanced cooling
 → geostrophic flows around AR → ‘torsional oscillation’ (HCS 2003)

most of the brightening effect due to the 'curved rims'
Steiner 2005, Carlsson et al. 2004

SPD Hale talk 14 June 2011
Measuring magnetic brightening of the Sun

R. Schnerr & HCS, 2011

Hinode

$\langle |B_z| \rangle = 11 \text{ G}$

$\delta I_{\text{mag}} / I = 1.2 \times 10^{-3}$

SST

$\langle |B_z| \rangle = 10 \text{ G}$

$\delta I_{\text{mag}} / I = 1.5 \times 10^{-3}$

relation with `inner network' fields
(Livingston & Harvey 1975, S. Martin)

SPD Hale talk 14 June 2011
measured (disk center): $\delta I_{\text{mag}} \approx 1.5 \times 10^{-3}$

$\langle B_z \rangle = 10 \text{ G}$

does not include:
- dark rims (compensation)
- effect on surrounding granulation
Measuring magnetic brightening with numerical simulations

Bolometric flux \(<B_z> = 50 \text{ G} \)

\(B_z \)

Irina Thaler & Remo Collet @ MPA

SPD Hale talk 14 June 2011
Measuring magnetic brightening with numerical simulations

Bolometric flux $<B_z> = 50$ G

Irina Thaler & Remo Collet @ MPA

Opposite polarities develop. Inner network field? (Livingston & Harvey 1975) ‘surface dynamo’? (Schüssler et al. 2007)

SPD Hale talk 14 June 2011
Granulation \((B=0, 6\times 6 \text{ Mm})\)
result (preliminary):
\[\langle B_z \rangle = 50 \text{ G} \rightarrow \frac{\delta F}{F_{\text{bolometric}}} < 0.5\% \]

Q: - cycle dependence?
 - is the background field a ‘local dynamo’?
Summary

- solar dynamo is not kinematic.
- it operates on differential rotation and magnetic instability, not convective turbulence.
- underappreciated observational clues in existing observations of AR.
- cycle does not operate on tachocline shear

- open questions:
 • thermodynamics of field @ base CZ
 • the ‘turbulent diffusion step’ (‘annealing’)
- an effect of quiet Sun flux on TSI ??
Other examples of field generation operating on magnetically driven instabilities

1 Magnetorotational (‘MRI’) field generation in accretion disks
2 Field generation in stably stratified zones of stars

1: - Angular momentum distribution in a Keplerian disk
 \[j \sim r^{1/2} \] hydrodynamically stable
 - seed field unstable to growth of magnetorotational
 - \(B \) breaks a hydrodynamic constraint:
 ‘magnetically enabled’ shear instability
 - flows are consequence of \(B \), not its source
Field generation in a stably stratified stellar interior

Energy source: differential rotation from
- spindown by stellar wind torque,
or
- change of internal structure by stellar evolution

field amplification cycle:
- seed field B_p
- field line stretching by $\Omega(r)$, $\rightarrow B_\phi \sim t$
- instability driven by magnetic energy sets in,
- v_r acting on $B_\phi \rightarrow$ new B_p

which instability?
- pinch type inst.
- magnetic buoyancy
- magnetorotational (MRI)
First to set in: an $m=1$ pinch type instability. ‘Tayler inst.’ (R.J. Tayler 1956 ... 1980 ... 1986)

Stable stratification dominates dynamics

Radial length scale \[\frac{l}{r} \approx \frac{\omega_A^2}{N^2} = \frac{\nu^2}{r^2 N^2} \ll 1 \]

horizontal \(l \sim r \)
Need to include: thermal diffusion, magnetic diffusion

Instability conditions from Acheson’s (1978) dispersion relation for azimuthal fields in stars

Simple model for a field amplification cycle: \((HCS 2002)\)

- ‘shellular’ rotation \(\Omega(r)\)
- ignore \(\theta\) - dependence of inst.
- \(e = \pi = 2 = 1\)

Solar interior \((\Delta\Omega/\Omega \sim 0.05)\)
- field amplification 10-100 x critical
- magnetic stress sufficient to keep up with spindown torque

(Schüssler et al. 1994)

SPD Hale talk 14 June 2011
Field generation can happen in a global, hydrodynamically stable velocity field.

Closing of amplification cycle possible by different forms of magnetic instability:
• in solar convection zone: magnetic buoyancy
• in accretion disks: MRI, buoyancy
 in convectively stable zones of ✶✶: Tayler inst.

nearly uniform rotation solar interior due
to a (weak form of) dynamo action